Machine-Learned Likelihoods (MLL) is a method that, by combining modern machine-learning classification techniques with likelihood-based inference tests, allows to estimate the experimental sensitivity of high-dimensional data sets. We extend the MLL method by including the exclusion hypothesis tests and show that the addition of Kernel Density Estimators avoids the need to bin the classifier output in order to extract the resulting one-dimensional signal and background probability density functions. We first test our method on toy models generated with multivariate Gaussian distributions, where the true probability distribution functions are known. We then apply it to a case of interest in the search for new physics at the HL-LHC, in which a $Z^\prime$ boson decays into lepton pairs, comparing the performance of our method for estimating 95\% CL exclusion limits to the results obtained applying a binned likelihood to the machine-learning classifier output.
translated by 谷歌翻译
我们使用神经网络研究几种简化的暗物质(DM)模型及其在LHC的签名。我们专注于通常的单声角加上缺失的横向能量通道,但要训练算法我们在2D直方图中组织数据而不是逐个事件阵列。这导致较大的性能提升,以区分标准模型(SM)和SM以及新物理信号。我们使用KineMatic单速仪功能作为输入数据,允许我们描述具有单个数据示例的模型的系列。我们发现神经网络性能不依赖于模拟的后台事件数量,如果它们作为$ s / \ sqrt {b} $函数呈现,其中$ s $和$ b $是信号和背景的数量每直方图的事件分别。这提供了对方法的灵活性,因为在这种情况下测试特定模型只需要了解新物理单次横截面。此外,我们还在关于真实DM性质的错误假设下讨论网络性能。最后,我们提出了多模型分类器以更普遍的方式搜索和识别新信号,对于下一个LHC运行。
translated by 谷歌翻译
Reinforcement learning is a machine learning approach based on behavioral psychology. It is focused on learning agents that can acquire knowledge and learn to carry out new tasks by interacting with the environment. However, a problem occurs when reinforcement learning is used in critical contexts where the users of the system need to have more information and reliability for the actions executed by an agent. In this regard, explainable reinforcement learning seeks to provide to an agent in training with methods in order to explain its behavior in such a way that users with no experience in machine learning could understand the agent's behavior. One of these is the memory-based explainable reinforcement learning method that is used to compute probabilities of success for each state-action pair using an episodic memory. In this work, we propose to make use of the memory-based explainable reinforcement learning method in a hierarchical environment composed of sub-tasks that need to be first addressed to solve a more complex task. The end goal is to verify if it is possible to provide to the agent the ability to explain its actions in the global task as well as in the sub-tasks. The results obtained showed that it is possible to use the memory-based method in hierarchical environments with high-level tasks and compute the probabilities of success to be used as a basis for explaining the agent's behavior.
translated by 谷歌翻译
We study a natural extension of classical empirical risk minimization, where the hypothesis space is a random subspace of a given space. In particular, we consider possibly data dependent subspaces spanned by a random subset of the data, recovering as a special case Nystrom approaches for kernel methods. Considering random subspaces naturally leads to computational savings, but the question is whether the corresponding learning accuracy is degraded. These statistical-computational tradeoffs have been recently explored for the least squares loss and self-concordant loss functions, such as the logistic loss. Here, we work to extend these results to convex Lipschitz loss functions, that might not be smooth, such as the hinge loss used in support vector machines. This unified analysis requires developing new proofs, that use different technical tools, such as sub-gaussian inputs, to achieve fast rates. Our main results show the existence of different settings, depending on how hard the learning problem is, for which computational efficiency can be improved with no loss in performance.
translated by 谷歌翻译
In recent years, spammers are now trying to obfuscate their intents by introducing hybrid spam e-mail combining both image and text parts, which is more challenging to detect in comparison to e-mails containing text or image only. The motivation behind this research is to design an effective approach filtering out hybrid spam e-mails to avoid situations where traditional text-based or image-baesd only filters fail to detect hybrid spam e-mails. To the best of our knowledge, a few studies have been conducted with the goal of detecting hybrid spam e-mails. Ordinarily, Optical Character Recognition (OCR) technology is used to eliminate the image parts of spam by transforming images into text. However, the research questions are that although OCR scanning is a very successful technique in processing text-and-image hybrid spam, it is not an effective solution for dealing with huge quantities due to the CPU power required and the execution time it takes to scan e-mail files. And the OCR techniques are not always reliable in the transformation processes. To address such problems, we propose new late multi-modal fusion training frameworks for a text-and-image hybrid spam e-mail filtering system compared to the classical early fusion detection frameworks based on the OCR method. Convolutional Neural Network (CNN) and Continuous Bag of Words were implemented to extract features from image and text parts of hybrid spam respectively, whereas generated features were fed to sigmoid layer and Machine Learning based classifiers including Random Forest (RF), Decision Tree (DT), Naive Bayes (NB) and Support Vector Machine (SVM) to determine the e-mail ham or spam.
translated by 谷歌翻译
机器学习变得无处不在。从金融到医学,机器学习模型正在促进决策过程,甚至在某些任务中表现优于人类。但是,在预测质量方面的巨大进展并没有在此类模型的安全性和相应的预测中找到对应物,在这种模型的安全性和相应的预测中,训练集(中毒)的分数扰动会严重破坏模型的准确性。关于中毒攻击和防御的研究甚至早于引入深层神经网络,从而导致了几种有前途的解决方案。其中,基于合奏的防御能力,在训练集的一部分中对不同的模型进行了培训,然后进行预测,由于它们的相对简单性以及理论和实践保证,因此受到了极大的关注。本文中的作品设计并实施了基于哈希的合奏方法,可用于ML鲁棒性,并评估其在随机森林上的适用性和性能,事实证明,机器学习模型对表格数据集的中毒尝试更具抵抗力。进行了广泛的实验评估,以评估我们的方法对各种攻击的鲁棒性,并将其与基于随机森林的传统单片模型进行比较。
translated by 谷歌翻译
包括设备诊断和异常检测在内的工业分析很大程度上依赖于异质生产数据的整合。知识图(kgs)作为数据格式和本体作为统一数据模式是一个突出的解决方案,它提供了高质量的数据集成以及一种方便且标准化的方式来交换数据并将分析应用程序分层。然而,它们之间高度不匹配的本体和工业数据的本体学自然而然导致低质量的KG,这阻碍了工业分析的采用和可扩展性。实际上,这样的kg大大增加了为用户编写查询的培训时间,消耗大量存储以获取冗余信息,并且很难维护和更新。为了解决这个问题,我们提出了一种本体论重塑方法,将本体论转换为KG模式,以更好地反映基本数据,从而有助于构建更好的KGS。在这张海报中,我们对正在进行的研究进行了初步讨论,并通过Bosch上有关现实世界行业数据的大量SPARQL查询来评估我们的方法,并讨论我们的发现。
translated by 谷歌翻译
图像垃圾邮件威胁检测一直是互联网惊人扩展的流行研究领域。这项研究提出了一个可解释的框架,用于使用卷积神经网络(CNN)算法和可解释的人工智能(XAI)算法检测垃圾邮件图像。在这项工作中,我们使用CNN模型分别对图像垃圾邮件进行了分类,而hoc XAI方法包括局部可解释的模型不可思议的解释(Lime)和Shapley添加说明(SHAP),以提供有关黑手盒CNN的决定的解释关于垃圾邮件图像检测的模型。我们在6636图像数据集上训练,然后评估拟议方法的性能,包括垃圾邮件图像和从三个不同的公开电子邮件Corpora收集的垃圾邮件图像和正常图像。实验结果表明,根据不同的性能指标,提出的框架实现了令人满意的检测结果,而独立模型的XAI算法可以为不同模型的决策提供解释,以比较未来的研究。
translated by 谷歌翻译
机器学习(ML)为生物处理工程的发展做出了重大贡献,但其应用仍然有限,阻碍了生物过程自动化的巨大潜力。用于模型构建自动化的ML可以看作是引入另一种抽象水平的一种方式,将专家的人类集中在生物过程开发的最认知任务中。首先,概率编程用于预测模型的自动构建。其次,机器学习会通过计划实验来测试假设并进行调查以收集信息性数据来自动评估替代决策,以收集基于模型预测不确定性的模型选择的信息数据。这篇评论提供了有关生物处理开发中基于ML的自动化的全面概述。一方面,生物技术和生物工程社区应意识到现有ML解决方案在生物技术和生物制药中的应用的限制。另一方面,必须确定缺失的链接,以使ML和人工智能(AI)解决方案轻松实施在有价值的生物社区解决方案中。我们总结了几个重要的生物处理系统的ML实施,并提出了两个至关重要的挑战,这些挑战仍然是生物技术自动化的瓶颈,并减少了生物技术开发的不确定性。没有一个合适的程序;但是,这项综述应有助于确定结合生物技术和ML领域的潜在自动化。
translated by 谷歌翻译
在许多应用程序(例如运动锦标赛或推荐系统)中,我们可以使用该数据,包括一组$ n $项目(或玩家)之间的成对比较。目的是使用这些数据来推断每个项目和/或其排名的潜在强度。此问题的现有结果主要集中在由单个比较图$ g $组成的设置上。但是,存在成对比较数据随时间发展的场景(例如体育比赛)。这种动态设置的理论结果相对有限,是本文的重点。我们研究\ emph {翻译同步}问题的扩展,到动态设置。在此设置中,我们给出了一系列比较图$(g_t)_ {t \ in \ mathcal {t}} $,其中$ \ nathcal {t} \ subset [0,1] $是代表时间的网格域,对于每个项目$ i $和time $ t \ in \ mathcal {t} $,有一个关联的未知强度参数$ z^*_ {t,i} \ in \ mathbb {r} $。我们的目标是恢复,以$ t \在\ Mathcal {t} $中,强度向量$ z^*_ t =(z^*_ {t,1},\ cdots,z^*_ {t,n}) $从$ z^*_ {t,i} -z^*_ {t,j} $的噪声测量值中,其中$ \ {i,j \} $是$ g_t $中的边缘。假设$ z^*_ t $在$ t $中顺利地演变,我们提出了两个估计器 - 一个基于平滑度的最小二乘方法,另一个基于对合适平滑度操作员低频本质空间的投影。对于两个估计器,我们为$ \ ell_2 $估计错误提供有限的样本范围,假设$ g_t $已连接到\ mathcal {t} $中的所有$ t \网格尺寸$ | \ MATHCAL {T} | $。我们通过有关合成和真实数据的实验来补充理论发现。
translated by 谷歌翻译